skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jaquess, Kyle J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Few studies have examined high-level motor plans underlying cognitive-motor performance during practice of complex action sequences. These investigations have assessed performance through fairly simple metrics without examining how practice affects the structures of action sequences. By adapting the Levenshtein distance (LD) method to the motor domain, we propose a computational approach to accurately capture performance dynamics during practice of action sequences. Practice performance dynamics were assessed by computing the LD based on the number of insertions, deletions, and substitutions of actions needed to transform any sequence into a reference sequence (having a minimal number of actions to complete the task). Also, combining LD-based performance with mental workload metrics allowed assessment of cognitive-motor efficiency dynamics. This approach was tested on the Tower of Hanoi task. The findings revealed that throughout practice this method could capture: i) action sequence performance improvements as indexed by a reduced LD (decrease of insertions and substitutions), ii) structural modifications of the high-level plans, iii) an attenuation of mental workload, and iv) enhanced cognitive-motor efficiency. This effort complements prior work examining the practice of complex action sequences in healthy adults and has potential for probing cognitive-motor impairment in clinical populations as well as the development/assessment of cognitive robotic controllers. 
    more » « less